

Produced water desalination using High Temperature Reverse Osmosis (HTRO) membranes

Cheng Chen, Prakhar Prakash Chevron Energy Technology Company

> Xiaofei Huang, Rich Franks Hydranautics

> > NAMS 2020 May 21, 2020

Introduction

- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

Produced water desalination

- Chevron's upstream oil production involves managing excess water also known as produced water
- Produced water from heavy oil production in sandstone reservoirs has the following characteristics
 - High temperature (as high as 200 °F or 93 °C)
 - High silica content
 - High boron content in many cases
- One approach to managing produced water desalination and its drivers are
 - Reducing/avoiding downhole injection when downhole disposal capacity is insufficient/unavailable
 - Increasing reuse opportunities for produced water including beneficial reuse
 - Reducing use of freshwater in drought region
 - Meeting future production water handling needs
 - Extending life of asset by removing reservoir capacity constraints

HTRO Membranes: Key Considerations

- Membrane technology was selected in the study with supporting factors such as
 - Brackish water relatively low TDS
 - Low energy consumption compared to thermal desalination
 - Proven technology for produced water desalination
- Why high temperature reverse osmosis membranes?
 - Reduced cooling cost of feed water (vs. standard temperature RO membranes)
 - Improved silica solubility in feedwater
 - Reduced energy cost for RO process (higher pumping cost for standard temperature RO membranes)
- Produced water desalination project development

- Introduction
- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

Laboratory testing using synthetic water

- Testing temperatures: 25 °C, 40 °C, 55 °C and 60 °C
- Synthetic water composition

	Ca	Mg	Na	к	CI	SO4	Alkalinity	Boron
mg/L	12.7	2.12	3150	118	4331	192	628	83.1

TDS: ~ 8500 mg/L; pH: 10.9-11.2

- Testing conditions:
 - Single element 4 inch HTRO membrane with surface area of 70 ft²
 - Recovery: 15%
 - Permeate flux: 10.5 gfd

Boron rejection calibration

- Surprisingly good boron rejection at high temperatures.
- Large discrepancy between lab testing results and software projection.
- Software calibration to match synthetic water test at high pH and high temperatures.

- Introduction
- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

Laboratory testing using produced water

- Field produced water was softened and pre-filtered with 0.2 micron filter.
- Testing temperature: 55 °C
- Testing conditions:
 - Single element 2.5 inch HTRO membrane with surface area of 23 ${\rm ft}^2$
 - Single pass recovery: 7%
 - Permeate flux: 10 gfd

HTRO performance at high recovery ratio

- Field produced water was used at pH of 11 and 55 °C.
- Permeate stream was directed to permeate tank to achieve high recovery ratio.
 - Boron, Na and TDS removal 100% 99% Ο 0 98% Δ 97% A Removal, % 96% 95% 94% 93% 92% 91% 90% 0% 20% 40% 60% 80% 100% **Recovery** ratio □Na removal **∆**TDS removal OBoron removal

-40%, 60% and 75%

- Introduction
- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

System Projection vs Lab Results

- System level projection was performed using 4 inch HTRO membrane (same product).
 - Boron rejection was calibrated using synthetic water data
 - Two or three stages design depending on recovery ratio

YDRANAUTICS

- Introduction
- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

Pilot testing plan

- The performance of high temperature RO membranes are promising in ion rejections.
- The plan is to conduct field pilot study using 4 inch HTRO membranes with UF pretreatment.
- Test duration 6~12 months
 - Verify membrane performance and understand final permeate effluent quality
 - Understand long term membrane durability at high pH and high temperature
 - Investigate membrane fouling and mitigation strategy

- Introduction
- Lab testing using synthetic water
- Lab testing using field produced water
- System level projection vs. lab data
- Real field implementation: pilot test plan
- Summary

Summary

- High temperature RO membranes are promising for desalination of high temperature produced water.
- The rejection of most ions and species are consistent between lab testing and software projection.
- Synthetic water and field produced water showed similar boron and TDS rejection profile.
- Boron rejection data from lab testing is much improved at high temperature and high pH.
- Pilot test will be needed to better understand long term membrane performance and durability.

